# **C1 Differentiation**

# 1. June 2010 qu. 6

Find the gradient of the curve  $y = 2x + \frac{6}{\sqrt{x}}$  at the point where x = 4. [5]

# 2. June 2010 qu. 10

- (i) Find the coordinates of the stationary points of the curve  $y = 2x^3 + 5x^2 4x$ . [6]
- (ii) State the set of values for x for which  $2x^3 + 5x^2 4x$  is a decreasing function. [2]
- (iii) Show that the equation of the tangent to the curve at the point where  $x = \frac{1}{2}$  is

$$10x - 4y - 7 = 0.$$
 [4]

(iv) Hence, with the aid of a sketch, show that the equation  $2x^3 + 5x^2 - 4x = \frac{5}{2}x - \frac{7}{4}$  has two distinct real roots. [2]

# 3. Jan 2010 qu. 3

Find the equation of the normal to the curve  $y = x^3 - 4x^2 + 7$  at the point (2, -1), giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [7]

# 4. Jan 2010 qu. 6



Not to scale

[3]

The diagram shows part of the curve  $y = x^2 + 5$ . The point *A* has coordinates (1, 6). The point *B* has coordinates (*a*,  $a^2 + 5$ ), where *a* is a constant greater than 1. The point *C* is on the curve between *A* and *B*.

- (i) Find by differentiation the value of the gradient of the curve at the point *A*. [2]
- (ii) The line segment joining the points A and B has gradient 2.3. Find the value of a. [4]
- (iii) State a possible value for the gradient of the line segment joining the points *A* and *C*. [1]

#### 5. Jan 2010 qu. 9

| Give | n that $f(x) =$                | $\frac{1}{x} - \sqrt{x} + 3,$ |            |
|------|--------------------------------|-------------------------------|------------|
| . ,  | find $f'(x)$ , find $f''(4)$ . |                               | [3]<br>[5] |

## 6. June 2009 qu. 1

Given that  $y = x^5 + \frac{1}{x^2}$ , find

(i) 
$$\frac{dy}{dx}$$
, [3]

(ii) 
$$\frac{d^2 y}{dx^2}.$$
 [2]

# 7. June 2009 qu. 10

- (i) Solve the equation  $9x^2 + 18x 7 = 0$ .
  - (ii) Find the coordinates of the stationary point on the curve  $y = 9x^2 + 18x 7$ . [4]

(iii) Sketch the curve  $y = 9x^2 + 18x - 7$ , giving the coordinates of all intercepts with the axes. [3]

[1]

[2]

[4]

(iv) For what values of x does  $9x^2 + 18x - 7$  increase as x increases?

# 8. June 2009 qu. 11

The point *P* on the curve  $y = k\sqrt{x}$  has *x*-coordinate 4. The normal to the curve at *P* is parallel to the line 2x + 3y = 0.

(i) Find the value of k.
(ii) This normal meets the *x*-axis at the point *Q*. Calculate the area of the triangle *OPQ*, where *O* is the point (0, 0).

#### 9. Jan 2009 qu. 5

Find  $\frac{dx}{dy}$  in each of the following cases:

(i) 
$$y = 10x^{-5}$$
, [2]

(ii) 
$$y = \sqrt[4]{x}$$
, [3]

(iii) 
$$y = x(x+3)(1-5x)$$
. [4]

#### 10. Jan 2009 qu. 9

The curve  $y = x^3 + px^2 + 2$  has a stationary point when x = 4. Find the value of the constant p and determine whether the stationary point is a maximum or minimum point. [7]

#### 11. Jan 2009 qu. 10

A curve has equation  $y = x^2 + x$ .

| (i)   | Find the gradient of the curve at the point for which $x = 2$ .                           | [2] |
|-------|-------------------------------------------------------------------------------------------|-----|
| (ii)  | Find the equation of the normal to the curve at the point for which $x = 2$ , giving your |     |
|       | answer in the form $ax + by + c = 0$ , where a, b and c are integers.                     | [4] |
| (iii) | Find the values of k for which the line $y = kx - 4$ is a tangent to the curve.           | [6] |
|       |                                                                                           |     |

# 12. June 2008 qu. 5

Find the gradient of the curve  $y = 8\sqrt{x} + x$  at the point whose x-coordinate is 9. [5]

#### 13. Jan 2008 qu. 8

- (i)Find the coordinates of the stationary points on the curve  $y = x^3 + x^2 x + 3$ .[6](ii)Determine whether each stationary point is a maximum point or a minimum point.[3]
- (iii) For what values of x does  $x^3 + x^2 x + 3$  decrease as x increases?

# 14. June 2007 qu. 5



The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length 20 metres, is used to form the remaining three sides. The width of the enclosure is x metres.

(i) Show that the enclosed area,  $A m^2$ , is given by

$$A = 20x - 2x^2.$$
 [2]

(ii) Use differentiation to find the maximum value of *A*.

# 15. Jan 2007 qu. 7

Find  $\frac{dy}{dx}$  in each of the following cases.

(i) 
$$y = 5x + 3$$
 [1]

(ii) 
$$y = \frac{2}{x^2}$$
 [3]

(iii) 
$$y = (2x+1)(5x-7)$$
 [4]

# 16. June 2006 qu. 1

- The points  $\overline{A}(1, 3)$  and  $\overline{B}(4, 21)$  lie on the curve  $y = x^2 + x + 1$ .
- (i) Find the gradient of the line *AB*.
- (ii) Find the gradient of the curve  $y = x^2 + x + 1$  at the point where x = 3. [2]

[2]

# 17. June 206 qu. 8

A cuboid has a volume of 8 m<sup>3</sup>. The base of the cuboid is square with sides of length x metres. The surface area of the cuboid is  $A m^2$ .

(i) Show that 
$$A = 2x^2 + \frac{32}{x}$$
. [3]

(ii) Find 
$$\frac{dA}{dx}$$
. [3]

(iii) Find the value of *x* which gives the smallest surface area of the cuboid, justifying your answer. [4]

# 18. Jan 2006 qu. 6

| (i)   | Find the coordinates of the stationary points on the curve $y = x^3 - 3x^2 + 4$ . | [6] |
|-------|-----------------------------------------------------------------------------------|-----|
| (ii)  | Determine whether each stationary point is a maximum point or a minimum point.    | [3] |
| (iii) | For what values of x does $x^3 - 3x^2 + 4$ increase as x increases?               | [2] |

# 19. June 2005 qu. 10

(i) Given that 
$$y = \frac{1}{3}x^3 - 9x$$
, find  $\frac{dy}{dx}$ . [2]

- (ii) Find the coordinates of the stationary points on the curve  $y = \frac{1}{3}x^3 9x$ . [3]
- (iii) Determine whether each stationary point is a maximum point or a minimum point. [3]
- (iv) Given that 24x + 3y + 2 = 0 is the equation of the tangent to the curve at the point (p, q), find p and q. [5]