C1 Differentiation

1. June 2010 qu. 6

Find the gradient of the curve $y=2 x+\frac{6}{\sqrt{x}}$ at the point where $x=4$.
2. June $\mathbf{2 0 1 0}$ qu. 10
(i) Find the coordinates of the stationary points of the curve $y=2 x^{3}+5 x^{2}-4 x$.
(ii) State the set of values for x for which $2 x^{3}+5 x^{2}-4 x$ is a decreasing function.
(iii) Show that the equation of the tangent to the curve at the point where $x=\frac{1}{2}$ is $10 x-4 y-7=0$.
(iv) Hence, with the aid of a sketch, show that the equation $2 x^{3}+5 x^{2}-4 x=\frac{5}{2} x-\frac{7}{4}$ has two distinct real roots.
3. Jan 2010 qu. 3

Find the equation of the normal to the curve $y=x^{3}-4 x^{2}+7$ at the point (2, -1), giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
4. Jan 2010 qu. 6

Not to scale
The diagram shows part of the curve $y=x^{2}+5$. The point A has coordinates $(1,6)$. The point B has coordinates $\left(a, a^{2}+5\right)$, where a is a constant greater than 1 . The point C is on the curve between A and B.
(i) Find by differentiation the value of the gradient of the curve at the point A.
(ii) The line segment joining the points A and B has gradient 2.3. Find the value of a.
(iii) State a possible value for the gradient of the line segment joining the points A and C.
5. Jan 2010 qu. 9

Given that $\mathrm{f}(x)=\frac{1}{x}-\sqrt{x}+3$,
(i) find $\mathrm{f}^{\prime}(x)$,
(ii) find $f^{\prime \prime}(4)$.
6. June 2009 qu. 1

Given that $y=x^{5}+\frac{1}{x^{2}}$, find
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
7. June 2009 qu. 10
(i) Solve the equation $9 x^{2}+18 x-7=0$.
(ii) Find the coordinates of the stationary point on the curve $y=9 x^{2}+18 x-7$.
(iii) Sketch the curve $y=9 x^{2}+18 x-7$, giving the coordinates of all intercepts with the axes.
(iv) For what values of x does $9 x^{2}+18 x-7$ increase as x increases?
8. June 2009 qu. 11

The point P on the curve $y=k \sqrt{x}$ has x-coordinate 4. The normal to the curve at P is parallel to the line $2 x+3 y=0$.
(i) Find the value of k.
(ii) This normal meets the x-axis at the point Q. Calculate the area of the triangle $O P Q$, where O is the point $(0,0)$.
9. Jan 2009 qu. 5

Find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in each of the following cases:
(i) $y=10 x^{-5}$,
(ii) $y=\sqrt[4]{x}$,
(iii) $y=x(x+3)(1-5 x)$.
10. Jan 2009 qu. 9

The curve $y=x^{3}+p x^{2}+2$ has a stationary point when $x=4$. Find the value of the constant p and determine whether the stationary point is a maximum or minimum point.
11. Jan 2009 qu. 10

A curve has equation $y=x^{2}+x$.
(i) Find the gradient of the curve at the point for which $x=2$.
(ii) Find the equation of the normal to the curve at the point for which $x=2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(iii) Find the values of k for which the line $y=k x-4$ is a tangent to the curve.
12. June 2008 qu. 5

Find the gradient of the curve $y=8 \sqrt{x}+x$ at the point whose x-coordinate is 9 .

13. Jan 2008 qu. 8

(i) Find the coordinates of the stationary points on the curve $y=x^{3}+x^{2}-x+3$.
(ii) Determine whether each stationary point is a maximum point or a minimum point.
(iii) For what values of x does $x^{3}+x^{2}-x+3$ decrease as x increases?
14. June 2007 qu. 5

The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length 20 metres, is used to form the remaining three sides. The width of the enclosure is x metres.
(i) Show that the enclosed area, $A \mathrm{~m}^{2}$, is given by

$$
\begin{equation*}
A=20 x-2 x^{2} \tag{2}
\end{equation*}
$$

(ii) Use differentiation to find the maximum value of A.

15. Jan 2007 qu. 7

Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in each of the following cases.
(i) $y=5 x+3$
(ii) $y=\frac{2}{x^{2}}$
(iii) $y=(2 x+1)(5 x-7)$
16. June 2006 qu. 1

The points $A(1,3)$ and $B(4,21)$ lie on the curve $y=x^{2}+x+1$.
(i) Find the gradient of the line $A B$.
(ii) Find the gradient of the curve $y=x^{2}+x+1$ at the point where $x=3$.
17. June 206 qu. 8

A cuboid has a volume of $8 \mathrm{~m}^{3}$. The base of the cuboid is square with sides of length x metres. The surface area of the cuboid is $A \mathrm{~m}^{2}$.
(i) Show that $A=2 x^{2}+\frac{32}{x}$.
(ii) Find $\frac{\mathrm{d} A}{\mathrm{~d} x}$.
(iii) Find the value of x which gives the smallest surface area of the cuboid, justifying your answer.
18. Jan 2006 qu. 6
(i) Find the coordinates of the stationary points on the curve $y=x^{3}-3 x^{2}+4$.
(ii) Determine whether each stationary point is a maximum point or a minimum point.
(iii) For what values of x does $x^{3}-3 x^{2}+4$ increase as x increases?
19. June 2005 qu. 10
(i) Given that $y=\frac{1}{3} x^{3}-9 x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the coordinates of the stationary points on the curve $y=\frac{1}{3} x^{3}-9 x$.
(iii) Determine whether each stationary point is a maximum point or a minimum point.
(iv) Given that $24 x+3 y+2=0$ is the equation of the tangent to the curve at the point (p, q), find p and q.

